2w^2+4=100

Simple and best practice solution for 2w^2+4=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2w^2+4=100 equation:



2w^2+4=100
We move all terms to the left:
2w^2+4-(100)=0
We add all the numbers together, and all the variables
2w^2-96=0
a = 2; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·2·(-96)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*2}=\frac{0-16\sqrt{3}}{4} =-\frac{16\sqrt{3}}{4} =-4\sqrt{3} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*2}=\frac{0+16\sqrt{3}}{4} =\frac{16\sqrt{3}}{4} =4\sqrt{3} $

See similar equations:

| ƒ(x)=x^2-20x+41 | | 14-2a=30 | | 6x-11=7/x | | 3n-26=28 | | (p-15)^2=121 | | 6-1-y=-18 | | 4y+10=8y-10 | | 4y+10=8y+-10 | | -82+6x=-46-36 | | 1.2x+2.5=9.7 | | (12+9)+(13x-4)=180 | | P/2p=p+4÷9 | | 10x+(-110)=24 | | R^2+14r-98=0 | | t^2-16t-28=0 | | X=y^2+8y+16 | | 2(×+5)=2x+5 | | 14x2+6x+1=0 | | 0.5x=20(0.5x-4000) | | (2x-7+X-3)/2=x+1 | | (12x-9)+(13x-4)=180 | | (4x+2)=(6x-4) | | (5x)=(2x+18) | | (5x)°=(2x+18)° | | 0=10x-4.9x^2+0.7 | | 70⁰=(5x-15)⁰ | | A=70B=(5x-15) | | –6a(6a)= | | 5d+40=-15 | | 2x-20=280 | | b(7-13)=43 | | 5x-34=214 |

Equations solver categories